The Mo-Ni-Si (Molybdenum-Nickel-Silicon) System

K.P. Gupta, The Indian Institute of Metals

Introduction

The Mo-Ni-Si system has been studied by several investigators. Several isothermal sections have been established and are reported here.

Binary Systems

The Mo-Ni System [1991Nas] (Fig. 1) has three intermediate phases: δ (MoNi); MoNi₃; and MoNi₄. All of these phases form through peritectic or peritectoid reactions: L + (Mo) $\leftrightarrow \delta$ at 1362 °C; (Ni) + $\delta \leftrightarrow$ MoNi₃ at 910 °C; and (Ni) + MoNi₃ \leftrightarrow MoNi₄ at 870 °C. Only one eutectic reaction, L $\leftrightarrow \delta$ + (Ni), occurs at 1317 °C.

The Mo-Si system [Massalski 2] (Fig. 2) has three intermediate phases, Mo₃Si, Mo₅Si₃, and MoSi₂, of which Mo₃Si and MoSi₂ are single-composition phases. Although the Mo₅Si₃ and MoSi₂ phases melt congruently at ~2180 and ~2050 °C, respectively, the Mo₃Si phase forms through a peritectic reaction, L + (Mo) \leftrightarrow Mo₃Si at ~2025 °C. The MoSi₂ phase exists in two polymorphic forms, β MoSi₂ above 1900 °C and α MoSi₂ below 1900 °C. Three eutectic reactions, L \leftrightarrow Mo₃Si + Mo₅Si₃, L \leftrightarrow Mo₅Si₃ + α MoSi₂, and L \leftrightarrow MoSi₂ + (Si), occur at 2020, ~1900, and ~1480 °C, respectively.

The Ni-Si system [1991Nas] (Fig. 3) has eight intermediate phases, Ni₃Si (β), Ni₃Si (β_2 and β_3), Ni₃₁Si₁₂ (γ'), Ni₂Si (δ'), Ni₂Si (θ), Ni₃Si₂ (ϵ and ϵ'), NiSi (ξ) and NiSi₂ (ζ and ζ'), of which several phases have polymorphic forms: β_2 and β_3 at ~25 at.% Si, ϵ and ϵ' at ~46 at.% Si, and α and β at ~66.7 at.% Si. These polymorphic transitions occur, respectively, at ~1165, a 830°, and 981 °C. The γ' , θ , and ξ phases melt congruently at 1242, 1306, and 992 °C, respectively. The β_1 , β_3 , δ' , ϵ' , and ζ' phases form through peritectic or peritectoid reactions: L + $\gamma' \leftrightarrow \beta_3$ at 1178 °C; L + $\theta \leftrightarrow \delta'$ at 1255 °C; L + (Si) $\leftrightarrow \zeta'$ at 993 °C; (Ni) + $\beta_2 \leftrightarrow$ β_1 at 1035 °C; and $\theta + \xi \leftrightarrow \epsilon'$ at 845 °C. There are eight eutectic or eutectoid reactions in the Ni-Si system: $L \leftrightarrow \gamma +$ β_3 at 1145 °C; $L \leftrightarrow \gamma' + \delta'$ at 1215 °C; $L \leftrightarrow \theta + \xi$ at 964 °C; L \leftrightarrow ξ + ζ at 966 °C; $\beta_2 \leftrightarrow \beta_1$ + γ' at 990 °C; θ $\leftrightarrow \delta' + \epsilon$ at 825 °C; $\epsilon' \leftrightarrow \delta' + \epsilon$ at 820 °C; $\epsilon \leftrightarrow \epsilon' + \xi$ at 800 °C; and $\epsilon \leftrightarrow \epsilon' + \delta'$ at 820 °C. The γ' , δ' , ξ , and ζ phases are single-composition phases.

Binary and Ternary Phases

There are 14 binary intermediate phases in the Mo-Ni-Si system. Several of them, however, exist in two polymorphic forms. Four ternary intermediate phases have been found to exist in the Mo-Ni-Si system. The structure data for all of the binary and ternary phases are given in Table 1.

Fig. 1 Mo-Ni phase diagram [1991Nas]

Fig. 2 Mo-Si phase diagram [Massalski 2]

Fig. 3 Ni-Si phase diagram [1991Nas]

Ternary System

An early investigation [1925Pfa] of the high Ni region of the Mo-Ni-Si system at 700 °C has been quoted by several later investigators [1959Gua, 1969Vir]. The existence of a ternary intermediate phase was reported by [1925Pfa]. However, [1959Gua] suggested that the Ni solid-solution boundary line as well as the position of the reported ternary intermediate phase were not determined accurately. Hence, [1959Gua] studied the Ni-rich region of the Mo-Ni-Si sys-

Phase designation	Composition(a)	Pearson symbol	Space group	Туре	Lattice parameter, nm		
					a	b	с
γ	(Ni)	cF4	Fm3m	Cu			
α	(Mo)	cI2	Im3m	W			
Si	(Si)	cF8	$Fd\overline{3}m$	C(diamond)			
ν	MoNi	<i>tI</i> 10	I4/m	MoNi ₄	0.5720		0.3564
к	MoNi ₃	oP8	Pmnn	βCu₃Ti	0.5064	0.4224	0.4448
δ	MoNi	oP56	$P2_{1}2_{1}2_{1}$	δ(MoNi)	0.9108	0.9108	0.8852
ρ	Mo ₃ Si	cP8	$Pm\overline{3}m$	Cr ₃ Si	0.489		
τ	Mo ₅ Si ₃	tI 38	I4/mcn	W ₅ Si ₃	0.728		0.500
π	aMoSi2	<i>tI</i> 6	I4/mmm	MoSi ₂	0.320		0.787
π'	βMoSi ₂		C6 ₂ 2				
β1	Ni ₃ Si(22.8-24.5)	cP4	$Pm\overline{3}m$	AuCu ₃	0.350		
β_2	Ni ₃ Si(24.5-25.5)	<i>mC</i> 16		GePt ₃	0.697	0.625	0.507
						$\beta = 48.74^{\circ}$	
β_3	Ni ₃ Si(24.5-25.5)	<i>mC</i> 16			0.704	0.626	0.508
						$\beta = 48.84^{\circ}$	
γ′	Ni ₃₁ Si ₁₂	hP43	P321	Ni31Si12	0.667		1.228
δ′	Ni ₂ Si(33.3)	oP12	Pnma	Co ₂ Si	0.706	0.499	0.372
θ	Ni ₂ Si(33.4-41.0)	hP6	$P6_3/m$	Ni ₂ Si	0.3805		0.489
e	Ni ₃ Si ₂	oP8					
ε′	Ni ₃ Si ₂						
ξ	NiSi	oP8	Pnma	MnP	0.562	0.518	0.334
ζ	NiSi ₂	cF12	$Fm\overline{3}m$	CaF_2	0.5406		
ζ'	NiSi ₂						
Γ_1	Mo33.3Ni50Si16.7	hP12	P63/mmc	MgZn ₂	0.4709		0.7655
Γ_1'	Mo32Ni50.5Si17.5			(b)			
Γ_1''	Mo32Ni38Si30			(b)			
μ	Mo ₅₀ Ni ₄₀ Si ₁₀	<i>R</i> 13	$R\overline{3}m$	W ₆ Fe ₇	0.4731		2.570(c)(d)
R	Mo55Ni42Si3	<i>R</i> 53	R3	R(Mo,Co,Cr)	1.102		1.963(c)(d)

 Table 1
 Structure data of binary and ternary phases of the Mo-Ni-Si system

(a) Composition of phases in at.%. (b) Possibly closely related to the MgZn₂-type Laves phase. (c) Lattice parameters from [1969Vir]. (d) Lattice parameters for hexagonal cell

tem in the composition region Ni-MoNi-NiSi. Alloys were prepared by arc melting high-purity component elements (Mo 99.92 mass% purity, Si 99.98 mass% purity, and carbonyl Ni containing ≤ 0.1 mass% impurity) and homogenized at 1100 °C for 72 h in dry hydrogen. At the Ni corner, the alloys were also annealed at 900 °C for 144 h to determine the phase boundary of the Ni solid-solution region. Phase analysis was done by x-ray diffraction (XRD) and metallography.

The partial isothermal section at 1100 °C established by [1959Gua] is given in Fig. 4. The presence of a ternary intermediate phase, ϕ , was reported along the line joining MoNi and NiSi at ~28 at.% Si. The ϕ -phase was not identified. The ϕ -phase was reported to be in equilibrium with the δ , γ , β_1 , γ' , δ' , θ , and ξ -phases. At 900 °C, the Ni solid-solution phase γ was found to have smaller solubility of Mo and Si than at 1100 °C, which is to be expected on the basis of Mo-Ni and Ni-Si binary data. The dash-dot line in Fig. 4 indicates the region of high Si content at which the alloys melted at 1100 °C. The phase equilibria shown in this region correspond to a lower temperature, possibly 900 °C.

The ϕ phase was later identified by [1960Gla] to be a MgZn₂-type Laves phase. In search of Laves phases stabi-

lized by Si, [1961Bar] found the alloy Mo₂Ni₃Si to be of MgZn₂-type Laves phase at 1200 °C, indicating that the Laves phase is stable at high temperatures. The lattice parameters of the Mo₂Ni₃Si Laves phase were found to be a = 0.47 nm and c = 0.747 nm.

A more complete investigation of the Mo-Ni-Si system was done by [1969Vir]. High-purity Ni (purity not indicated), 99.9⁺ mass% Mo and 99.9999 mass% Si were arcmelted in argon to prepare the alloys. The alloys were wrapped in Mo foil and sealed in evacuated quartz capsules, and were annealed for 1 week at 950 °C, the capsules were then cooled in air. Only XRD was used for the characterization of the alloys. The isothermal section of the Mo-Ni-Si system at 950 °C is given in Fig. 5. Fig. 5 shows the presence of three ternary intermediate phases Γ_1 , μ , and R. The presence of the R and µ phases in the Mo-Ni-Si system was reported earlier by [1965Sko] and [1966Sko], respectively. The Γ_1 phase, an MgZn₂-type Laves phase, was found to be a narrow (~2-3 at.% wide) region extending along the 33.3 at.% Mo line from ~15 to ~35 at.% Si. The μ -phase was found to be a very narrow V-shaped region, and the R-phase region was found to be an inverted triangular region ~7 at.% Mo wide and extending from about 2 to ~16 at.% Si. The

Fig. 4 A partial isothermal section of the Mo-Ni-Si system at the Ni- δ (MoNi) – ξ (NiSi) region at 1100 °C. The dash-dot line indicates the composition region of high Si content in which the alloys melted at 1100 °C. The dashed line shows the γ phase boundary at 900 °C [1959Gua].

Fig. 5 The 950 °C isothermal section of the Mo-Ni-Si system [1969Vir]

Fig. 6 A partial isothermal section of the Mo-Ni-Si system at 1280 °C [1979Sin]

MoNi δ phase did not extend to more than ~1 at.% Si. The lattice parameters of the μ and R phases were determined from two-phase alloys and are given in Table 1. The lattice parameters for the alloy with Mo₂Ni₃Si composition was found to be a = 0.4709 nm and c = 0.7655 nm, which is in reasonable agreement with [1961Bar]. Unlike [1959Gua], [1969Vir] showed that at lower temperatures the Γ_1 phase is in equilibrium with γ , β_1 , γ' , δ , θ , π , τ , and ρ phases but is not in equilibrium with the ξ on Mo solid-solution phase α . In the low-Si content region, the three phase boundaries were not determined accurately, and the γ phase boundary was also not determined. The R phase was found to be in equilibrium with the γ , δ , α , μ , Γ_1 , and ρ phases, and the μ phase was found to be in equilibrium with the γ , Γ_1 , and R phases. [1969Vir] showed that all of the binary phases had some solid solubility, whereas the accepted binary data show that some of the phases are single-composition phases. Hence, in Fig. 5 the phase boundaries of some of the intermediate phases have been adjusted to conform to the binary data.

[1979Sin], in their study of crystal chemistry of complex phases present in the Mo-(Fe, Co, Ni)-Si systems, determined a partial isothermal section of the Mo-Ni-Si system at 1280 °C. The alloys were arc-melted using 99.9 mass% pure component elements near the MoNi δ phase region, up to ~40 at.% Si. The alloys were annealed at 1280 °C for 4 days in evaeuated quartz capsules and quenched in cold water. Characterization of the alloys was done using metallography and x-ray diffraction. Figure 6 shows the partial isothermal section of the No-Ni-Si system at 1280 °C. At 1280 °C, the R-phase was found to be a very narrow (~1 at.% wide) lens-shaped region extending from ~5 to ~9 at.% Si, and the μ phase was found to be a very small region. Two other intermediate phases, Γ'_1 and Γ''_1 , were detected around the alloy compositions $Mo_{33}Ni_{50.5}Si_{17.5}$ (Γ'_1) and $Mo_{32}Ni_{38}Si_{30}$ (Γ_1'') extending from ~16 to 21 at.% Si and ~23 to ~35 at.% Si, respectively. The XRD patterns of both the phases resembled closely the XRD pattern of the MgZn₂-type Laves phase but had many extra diffraction lines that could not be accounted for on the basis of MgNi₂-type Laves phase. Thus, the Γ'_1 and Γ''_1 phases appear to be closely related to the MgZn₂-type Laves phase. The results of [1969Vir] and [1979Sin] indicate that both the R and μ -phase regions become small as the temperature increases and suggest that these phases possibly form through peritectic reactions or they melt congruently. The MgZn₂ Laves phase was found to be stable between 900 and 1200 °C, but above 1200 °C the two MgZn₂-related Laves phases form. Further investigation of the Mo-Ni-Si system should be done to determine how the μ and R phases form, up to what temperature the MgZn₂ and its related Laves phases remain stable, and how they form.

References

- **1925Pfa:** H. Pfautch, Z. Metallkd., Vol 17, 1925, p 48 (as quoted in [1959Gua])
- **1959Gua:** R.W. Guard and E.A. Smith, Constitution of Nickel-Base Ternary Alloys, *J. Inst. Metals*, Vol 88, 1959-60, p 283-287 (Phase Equilibria, #)
- **1960Gla:** E.I. Gladyshevskii and Yu.B. Kuzma, *Zh. Strukt. Khim.*, Vol 6, 1960, p 473 (as quoted in [1969Vir])
- 1961Bar: D.I. Bardos, K.P. Gupta, and P.A. Beck, Ternary Laves

Section II: Phase Diagram Evaluations

Phases with Transition Elements and Silicon, *Trans. AIME*, Vol 221, 1961, p 1987-1988 (Structure)

- **1965Sko:** P.V. Skolozdra, Ya.P. Yarmolyuk, and E.I. Gladyshevskii, *Zh. Strukt. Khim.*, Vol 6, 1965, p 473 (as quoted in [1969Vir])
- 1966Sko: P.V. Skolozdra, E.I. Gladyshevskii, and P.I. Kripyakevich, *Ukr. Fiz. Zh.*, Vol 11, 1966, p 206 (as quoted in [1969Vir])
- **1969Vir:** A.V. Virkar and A. Raman, Alloy Chemistry of σ (β U) Related Phases in Some Mo-Ni-X Systems: II. The character-

istics of δ and Other σ Related Phases in Some Mo-Ni-X Systems, *Z. Metallkd.*, Vol 60, 1969, p 594-600 (in English) (Phase Equilibria, #)

- **1979Sin:** J. Singh and K.P. Gupta, Phase Equilibria in the Mo-(Fe,Co,Ni) Si Systems Near the Molybdenum-Transition Metal Binaries, *Trans. Ind. Inst. Metals*, Vol 32, 1979, p 35-41 (Phase Equilibria, #)
- **1991Nas:** P. Nash, Phase Diagrams of Binary Nickel Alloys, ASM International, 1991, p 207-212 (Review)

Mo-Ni-Si evaluation contributed by **K.P. Gupta**, The Indian Institute of Metals, Metal House, Plot 13/4, Block AQ, Sector V, Calcutta, India. Literature searched through 1996. Dr. Gupta is the Alloy Phase Diagram Program Co-Category Editor for ternary nickel alloys.